skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Xinliang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Clinical question answering (QA) aims to automatically answer questions from medical professionals based on clinical texts. Studies show that neural QA models trained on one corpus may not generalize well to new clinical texts from a different institute or a different patient group, where large-scale QA pairs are not readily available for model retraining. To address this challenge, we propose a simple yet effective framework, CliniQG4QA, which leverages question generation (QG) to synthesize QA pairs on new clinical contexts and boosts QA models without requiring manual annotations. In order to generate diverse types of questions that are essential for training QA models, we further introduce a seq2seq-based question phrase prediction (QPP) module that can be used together with most existing QG models to diversify the generation. Our comprehensive experiment results show that the QA corpus generated by our framework can improve QA models on the new contexts (up to 8% absolute gain in terms of Exact Match), and that the QPP module plays a crucial role in achieving the gain. 
    more » « less
  2. We present a large, challenging dataset, COUGH, for COVID-19 FAQ retrieval. Similar to a standard FAQ dataset, COUGH consists of three parts: FAQ Bank, Query Bank and Relevance Set. The FAQ Bank contains ~16K FAQ items scraped from 55 credible websites (e.g., CDC and WHO). For evaluation, we introduce Query Bank and Relevance Set, where the former contains 1,236 human-paraphrased queries while the latter contains ~32 human-annotated FAQ items for each query. We analyze COUGH by testing different FAQ retrieval models built on top of BM25 and BERT, among which the best model achieves 48.8 under P@5, indicating a great challenge presented by COUGH and encouraging future research for further improvement. Our COUGH dataset is available at https://github.com/sunlab-osu/covid-faq. 
    more » « less
  3. null (Ed.)
    Natural language inference (NLI) is the task of determining whether a piece of text is entailed, contradicted by or unrelated to another piece of text. In this paper, we investigate how to tease systematic inferences (i.e., items for which people agree on the NLI label) apart from disagreement items (i.e., items which lead to different annotations), which most prior work has overlooked. To distinguish systematic inferences from disagreement items, we propose Artificial Annotators (AAs) to simulate the uncertainty in the annotation process by capturing the modes in annotations. Results on the CommitmentBank, a corpus of naturally occurring discourses in English, confirm that our approach performs statistically significantly better than all baselines. We further show that AAs learn linguistic patterns and context-dependent reasoning. 
    more » « less